Safe administration of hyperbaric oxygen after bleomycin *A case series of 15 patients*

Klaus D. Torp⁴, Martha Sue Carraway^{2,3}, Michael C. Ott⁵, Bryant W. Stolp^{1,2}, Richard E. Moon^{1,2,3}, Claude A. Piantadosi^{1,2,3}, John J. Freiberger^{1,2}

¹ Department of Anesthesiology, Duke University, Durham, N.C.

² Center for Hyperbaric Medicine and Environmental Physiology, Duke University, Durham, N.C.

³ Department of Internal Medicine, Duke University, Durham, N.C.

⁴ Department of Anesthesiology, Mayo Clinic, Jacksonville, Fla.

⁵ Department of Pulmonary Medicine, Uniformed Services University of the Health Sciences, Eglin AFB, Fla.

CORRESPONDING AUTHOR: Dr. John J. Freiberger - john.freiberger@duke.edu

ABSTRACT

Introduction: Supplemental oxygen has been reported to cause pulmonary complications after bleomycin. We describe the safe administration of hyperbaric oxygen (HBO₂) after bleomycin in 15 patients.

Methods: Paper and electronic records were reviewed for bleomycin-exposed patients at the Duke Center for Hyperbaric Medicine and Environmental Physiology from 1979 to 2010.

Results: Fourteen bleomycin-exposed patients received HBO_2 at Duke under a special-precautions protocol. One was treated for DCS elsewhere. The protocol included: pretreatment evaluation; chest radiograph; spirometry; blood gases; a single, 2-atmospheres absolute (atm abs), 120-minute HBO_2 treatment; and a gradual acceleration over one week to a twice-daily schedule contingent on clinical and laboratory findings. Bleomycin indications were: head-and-neck squamous cell carcinomas (11), Hodgkin's lymphoma (2), other carcinomas (2). HBO_2 indications were: osteoradionecrosis (10), soft-tissue radionecrosis (3), DCS (1) and a provocative oxygen toxicity test for a military aviator (1). Total bleomycin doses ranged from 40 to

INTRODUCTION

Controversy has surrounded the practice of supplemental oxygen administration to perioperative patients who have received bleomycin chemotherapy since the publication of a five-patient case series by Goldiner in 1978 [1] that suggested an oxygen-related risk of severe pulmonary complications. Although a PubMed search revealed no articles specifically stating that hyperbaric oxygen therapy (HBO₂) should be prohibited after bleo $225u/m^2$ (mean ± SD, 105 ± 57) given in conjunction with other chemotherapies and/or radiation. Radiation was 63.3 ± 31.72 Gy (mean \pm SD), none to the chest with the exception of one patient treated for DCS elsewhere. Other chemotherapies included: vinblastine (11), methotrexate (11), CCNU (6) cisplatinum (7), dacarbazin (2), Adriamycin (1), and vincristine (1). Median age at time of HBO₂ was 52 years (range 22-77). Median bleomycin-to-HBO₂ latency was 34 months (range 1-279). Three patients received HBO₂ within six months, and seven patients received HBO2 within two years of their last bleomycin exposure. There were no adverse pre-to-post HBO2 changes in: arterial blood gases, spirometry, chest radiograph findings or clinical reports. There were no persistent post-HBO₂ pulmonary complications on follow-up. Post-HBO₂ data were available for 40%, 53%, 87% and 100% of these parameters respectively.

Discussion: Bleomycin and oxygen can individually cause acute pulmonary toxicity. However, evidence for increased long-term susceptibility based on their synergy may be overstated.

mycin, diving-related hyperbaric oxygen exposure was unambiguously advised against by several prominent pulmonary and diving experts in a series of articles and letters in the literature of the late 1980s [2-4]. Although more recent articles have argued that perioperative oxygen restriction is not necessary [5-7], controversy has persisted [8-10], and as late as 2008, prior bleomycin remained an absolute contraindication to HBO₂ therapy in a highly influential hyperbaric medicine textbook [11] no matter how long the interval between bleomycin and HBO₂. Therefore, in an effort to provide additional data on this issue we report a case series of 15 post-bleomycin patients who safely received HBO₂ from 1979 to 2010 at the Duke Center for Hyperbaric Medicine and Environmental Physiology under a special-precautions protocol.

METHODS

After IRB approval, Duke Hospital and Duke Hyperbaric Center electronic records were searched from 1970 to 2010 for patients with a history of bleomycin administration who had presented for HBO₂ therapy. Both the electronic and paper records of these patients were examined for initial bleomycin and HBO₂ indications, bleomycin dose, therapeutic radiation to the thorax (yes or no), time elapsed between bleomycin therapy and the first HBO₂ treatment (bleomycin-to-HBO₂ latency in months), the number of HBO₂ sessions, concurrent (with HBO₂) chemotherapy, age, gender and smoking history.

The electronic and paper records were then searched for imaging and laboratory tests (arterial blood gas values, spirometry, chest radiograph reports) and progress notes that addressed post-HBO₂ respiratory status. Post-HBO₂ pulmonary complications were defined as any adverse change from pre-HBO₂ treatment condition in pulmonary imaging, laboratory values or progress note entry not attributable to the underlying disease. The elapsed time between the date of the last bleomycin treatment and the first HBO₂ treatment was calculated and designated as the bleomycin-to-HBO₂ latency time. The elapsed time between the date of the first HBO₂ treatment and the latest chart entry with pulmonary-related data was calculated and designated as the total follow-up time.

RESULTS

Fifteen records from bleomycin-exposed patients who had received HBO₂ were located. Fourteen records corresponded to bleomycin-exposed patients who had received HBO₂ at Duke under the protocol. The protocol included: pre-treatment evaluation; chest radiograph; spirometry; arterial blood gases; a single 2-atm abs, 120-minute HBO₂ treatment; and a gradual acceleration over a one-week period to a twice-daily schedule contingent on clinical and laboratory findings. The records of one additional bleomycin-exposed patient who was treated with HBO₂ for decompression sickness at another institution and later evaluated at Duke for fitness to dive was also reviewed. Initial bleomycin indications were: head-and-neck squamous cell carcinomas (11), Hodgkin's lymphoma (2) and other carcinomas (2). Indications for HBO₂ after bleomycin were: osteoradionecrosis (10), soft-tissue radionecrosis (3), DCS (1) and a provocative oxygen toxicity test for a military aviator (1). Total bleomycin doses ranged from 40 to 225u/m^2 (mean \pm SD, 105 ± 57) given in conjunction with other chemotherapies and/or radiation. Radiation was 63.3 ± 31.72 Gy (mean \pm SD), none to the chest except in the one patient who was treated for DCS elsewhere.

Other chemotherapies included: vinblastine (11), methotrexate (11), CCNU (6) cisplatinum (7), dacarbazin (2), adriamycin (1) and vincristine (1). Median age at time of HBO₂ was 52 years (range 22-77 years). Median bleomycin-to-HBO₂ latency was 34 months (range 1-279). Forty-seven percent of the sample received HBO₂ within two years of bleomycin chemotherapy without adverse effects (*Table 1, facing page*).

There were no persistent post-HBO₂ pulmonary complications (Table 2, facing page). One patient reported chest wall pain following one hour of HBO₂ that resolved after a 15-minute air break. This patient remained well and went on to receive a total of 38 treatments. A second patient experienced a transient episode of reduced PO₂ and chest pain that was not considered clinically significant and resolved within six hours of that day's HBO₂ treatment. This patient went on to receive a total of 40 treatments and remains well 21 years later. There were no adverse pre-topost-HBO₂ changes in: arterial blood gases, spirometry, chest X-ray findings or clinical reports. Post-HBO₂ data were available for 40%, 53%, 87% and 100% of these parameters respectively. There were no persistent post-HBO₂ pulmonary complications on follow-up.

DISCUSSION

The antineoplastic agent bleomycin is an antibiotic mixture of low-molecular weight glycopeptides, first isolated from *Streptomyces verticillus* in 1966 by Hamao Umezawa [12]. Bleomycin's antineoplastic activity results from DNA strand scission from reactive oxygen species generated by iron binding and oxidation-reduction cycling [13,14]. Bleomycin's minimal myelo-suppressive action [15-17] makes it particularly well suited as a component of a multiagent chemotherapy drug regimen; it is used for testicular cancer, lymphomas, sarcomas, melanomas, squamous cell carcinomas and as a sclerosing agent for malignant pleural effusions.

Patient Age at number HBO ₂		Gender	Bleomycin Indication	Bleomycin dose	Other chemotherapy received	Beomycin-to-HBO ₂ latency (months)	
1	77	m	nasal scca	40	vinblastin, methotrexate, CCNU	169.3	
2	38	m	other	unknown	vincristine	279.5	
3	29	f	other	120	methotrexate, cisplatinum, oncovin, dexamethasone	100.1	
4	57	f	nasal scca	unknown	unknown	216.7	
5	24	m	Hodgkin's	40	adriamycin, vinblastin, dacarbazine	18.4	
6	60	f	oral scca	90	vinblastin, methotrexate, CCNU	17	
7	61	f	oral scca	120	vinblastin, methotrexate, CCNU	39.1	
8	52	m	oral scca	120	vinblastin, methotrexate, cisplatinum, CCNU	23.8	
9	74	f	oral scca	80	vinblastin, methotrexate, cisplatinum	5	
10	54	f	nasal scca	225	vinblastin, methotrexate, CCNU	34.2	
11	61	m	oral scca	120	vinblastin, methotrexate, cisplatinum	6.2	
12	26	m	Hodgkin's	210	vinblastin, doxorubicin, dacarbazine	9.5	
13	41	m	oral scca	60	vinblastin, methotrexate, CCNU	1.1	
14	20	f	nasal scca	80	cisplatinum, methotrexate, hydroxyurea 57.6		
15	43	f	oral scca	60	vinblastin, methotrexate, cisplatinum	59.2	

TABLE 1 – Demographics, bleomycin indications, adjuvant chemotherapy and ordered by bleomycin-to-HBO₂ latency

scca = squamous cell carcinoma

TABLE 2 – HBO₂ indication, symptoms post-HBO₂, imaging and laboratory studies, HBO₂ outcome and follow-up time

Patient number	HBO ₂ indication	Symptoms post-HBO ₂	ABG post-HBO ₂	CXR	Spirometry	HBO ₂ outcome	Follow-up (months)
1	ORN, jaw	no		no change			0.9
2	ORN, jaw	no		no change	no change	no change	129.5
3	DCS	no		no change	no change		1.7
4	ORN, jaw	no	no change	no change	no change	no change	1.2
5	O2 test ¹	no		no info	no change	no change	0.3
6	ORN, jaw	no		no info			6.8
7	ORN, jaw	no		no change			135
8	ORN, jaw	no	no change	no change	no change	no change	158.8
9	STRN, oral	no	no change	no change			8.4
10	ORN, jaw	no	no change	no change	no change		32.2
11	STRN, oral	no	no change	no change			12.1
12	STRN, oral	yes ²	no change	no change	no change	no change	48.8
13	ORN, jaw	no		no change			7.5
14	ORN, jaw	yes ³	no change	no change	improved	worse	259.7
15	ORN, jaw	no		no change			219.6

nl = normal, ORN = osteoradionecrosis, STRN = soft tissue radionecrosis

¹ Provocative test for increased susceptibility to O₂ toxicity in an aviator who had received bleomycin.

² Chest wall pain reported after one hour of HBO₂ which resolved after a 15-minute air break.

PO₂ 110 and 77 mmHg on post-HBO₂ samples. This patient went on to receive a total of 38 treatments.

³ Transient episode of reduced PO₂ and chest pain which was not considered clinically significant and which resolved after treatment This patient went on to receive a total of 40 treatments.

Acute pulmonary toxicity of bleomycin

Acute pulmonary toxicity is a well-recognized side effect of bleomycin therapy. It has been reported in up to 40% of patients, with a fatality rate of 1.5% in some series [15,18]. Tissues with the lowest level of bleomycin hydrolase (lung and skin) are the most susceptible [19] and bleomycin pulmonary toxicity has been reported at doses as low as 20 to 60 (u/m^2) [20,21]. Risk increases rapidly above a cumulative dose of 450 (u/m^2) [15] and is greater with concomitant additional chemotherapy [22] or adjunctive radiotherapy to the chest [2,23,24].

Renal insufficiency [21,25] and age [9,15] may also increase risk. The injury is independent of the route of drug administration and appears to begin in the pulmonary vascular endothelium with edema and an influx of inflammatory cells plus fibroblasts which deposit collagen leading to interstitial fibrosis [26]. The acute toxicity syndrome is expressed as a hypersensitivity pneumonitis with eosinophilic infiltrates [27] or a dosedependent interstitial pneumonitis that progresses to pulmonary fibrosis. Initial symptoms are fever, dry cough, dyspnea, tachypnea and cyanosis with fine bibasilar crepitations, rhonchi and pleural rubbing [15, 18]. Radiographic findings may occur in the absence of clinical symptoms [22] or at any time during their progression [28] and include bilateral bibasilar alveolar and interstitial infiltrates as well as lobar consolidation.

Unilateral findings and focal infiltrates have also been described [29]. Small CT scan linear and subpleural nodular lesions may appear early and before changes on chest X-ray, and pulmonary function may show a restrictive pattern and a decrease in diffusing capacity for carbon monoxide (DLCO) [7]. If pulmonary toxicity occurs, symptoms usually begin during bleomycin treatment. However, delayed presentations of up to six months have been reported. Cessation of drug administration has been reported to result in regression of symptoms in about one-third of the patients [18].

Reports of delayed bleomycin pulmonary toxicity associated with supplemental oxygen

Perioperative administration of supplemental oxygen was first suggested to contribute to delayed bleomycin pulmonary toxicity in 1978 when Goldiner published a series of five patients who suffered fatal postoperative respiratory failure after perioperative oxygen in the setting of prior bleomycin chemotherapy [1]. These patients had received moderately high doses of bleomycin (mean doses 426 ± 181 mg) administered a mean of 9.6 months earlier. Although all afflicted patients had preoperative pulmonary disease with documented abnormal DLCO values (55-68% of predicted) prior to oxygen administration, Goldiner attributed the respiratory failure to perioperative oxygen supplementation (39% fraction of inspired oxygen/FiO₂, mean duration 5.86 ± 0.96 SD hours) [1]. Moreover, Goldiner subsequently published a second, non-controlled, prospective trial that limited perioperative oxygen to 24% FiO₂ and restricted crystalloid fluid replacement. All 12 patients survived, lending anecdotal credence to his supposition.

Goldiner's reports were followed by Nygaard's description of four respiratory deaths after esophageal resection in eight patients given radiotherapy (3000cGy) and bleomycin [24]; Douglas's report of a single respiratory death out of 14 patients with testicular carcinoma following high FiO₂ and rigid bronchoscopy; and case series by Luis, Hulbert, Ingrassia and Gibson [10,30-32] that appeared to establish a pattern to support oxygen contraindication after bleomycin administration.

A short history of the association between bleomycin, supplemental oxygen and respiratory failure

By the 1980s, the contraindication of supplemental oxygen after bleomycin was widely accepted. However, because a causal link between bleomycin, perioperative oxygen and postoperative respiratory failure was never firmly established, publications began to question the causal relationship proposed [5,6,33]. In a 1998 study Donat and Levy reported 77 patients undergoing 97 surgical procedures. In their retrospective study, 19 of 77 post-bleomycin patients developed postoperative oxygen desaturation after surgery. The patients' last bleomycin dose had been given 6.4 months (mean value) prior to surgery.

However, the case control comparison showed no association with intraoperative FiO₂. Units of blood transfused, preoperative forced vital capacity and surgical time (in descending order) were the only significant predictors of oxygen desaturation. All cases responded to conventional therapy, and Donat and Levy concluded that oxygen was not a significant risk factor for developing postoperative pulmonary complications [5]. Animal models of acute bleomycin toxicity rather than chronic risk have shown an adverse and synergistic effect of oxygen and bleomycin. Toledo found that bleomycin shortened the median survival time of mice breathing 40% oxygen [34], and Tryka [35] reported 90% mortality in hamsters who received concomitant normobaric hyperoxia and bleomycin therapy *vs.* 15% in those receiving

TABLE 3 – Literature summary: Bleomycin to perioperative oxygen latency						
Reference	Oxygen dose	Bleomycin dose	Bleomycin to O ₂ latency	Outcome		
1	.39 for 5.86 ± 0.96 hours	426 ± 181 mg	7 - 12 months	5 resp. failure fatalities; all with abnormal DLCO values preoperatively.		
5	Mean values: 0.87 for 56 min followed by 0.4 for 8.1 hours	437 mg	Mean value 6.4 months	77 patients. No ARDS. No fatalities. Post-op desaturation in 19 patients, responding to therapy.		
24	surgical FiO ₂ not recorded	120 mg	unknown and variable	Respiratory failure and death in 4 of 8 patients after 3000-6000cGy radiotherapy, bleomycin and esophageal resection.		
6	0.5 - 1 for 1 hour 35	300 mg	3 months	Only 1 case with respiratory failure out of 14 patients and 20 procedures with bronchoscopy with high FiO2. Responded well to steroids.		
10	0.33 for 4 hours 0.71 for 30 min	240 mg	20 days	Case report. Respiratory failure; recovered with steroids.		
22	> 0.33 0.4 - 0.5	360 mg 360 mg	1 month 3.5 months	2 cases of fatal progressive respiratory failure		
30	0.5 for 1 hour 0.5 for 2 hours + 0.8-1 for 2 hours	30 mg	21 days 49 days	Case report. 1st procedure: No post-op problems. 2nd procedure: ARDS; died in ICU of MOF. Steroids no effect. DLCO 80% pre-op.		
31	0.4 for 9.5 hours	360 mg	10 days	Case report of 1 fatal resp. failure		
32	0.3 for 10 hours	120 mg	7 months	Case report. ARDS, responded well to steroids. History of pneumonitis after bleomycin.		
33	0.41 ± 0.04 for 6.1 ± 0.7 hours	407 ± 20 mg	10 ± 0.3 months	13 patients. No resp. failure. Abnormal. PFTs in only 3 patients.		
45	0.33 intra-op 0.4 for 4 days post-op	189 mg	19 days	Case report: Died 12 days post-op. Autopsy showed signs of bleomycin toxicity. DLCO pre-op 60%.		

ARDS = Adult respiratory distress syndrome; MOF = Multiorgan failure; DLCO = diffusion capacity for carbon monoxide

bleomycin alone. However elevated oxygen partial pressure during, but not following, bleomycin therapy was the experimental risk factor in both studies, and Tryka did not find increased mortality or interstitial pneumonitis when normobaric hyperoxia (FiO₂ of 0.7 or 1) was administered after bleomycin.

It is also difficult to extrapolate animal data to humans because species differences in oxygen toxicity susceptibility [36]. The equivalency of experimental oxygen doses and the duration of experimental oxygen administration in most animal studies are greater than those used in routine perioperative patient care [34,36], making it difficult to isolate simple pulmonary oxygen toxicity from the combined effect of oxygen and the drug. Some have suggested that the practice of avoiding high FiO₂ after bleomycin be abandoned [26,37].

Hyperbaric oxygen and bleomycin

By extension and in conformity with prevailing beliefs, by the 1980s a history of bleomycin chemotherapy was an accepted contraindication to diving-associated HBO₂ exposure [2-4], and although not well supported by evidence, this contraindication has persisted [11].

However, HBO2 has been used in close temporal proximity to bleomycin without adverse outcome. In 1983 Shanta reported on 28 patients with oral squamous cell carcinoma, who were treated with 14 cycles of irradiation in a hyperbaric chamber for 15 to 20 minutes, at 3 atm abs, three times a week after receiving 15 to 20 mg of bleomycin (totals of 150 to 200 mg) (38) without adverse effect. Wang reported a patient who completed 30 HBO₂ treatments (2 atm abs for 90 minutes) five months after a cumulative dose of 45 units of bleomycin.

Wang's patient died from her malignancy one month after treatment, but without report of pulmonary complications [39]. In 2007 Latson reported a case of a 36-year-old diver who was treated with a U.S. Navy Treatment Table 6 at 22 months after treatment with combined bleomycin (160 mg total) and neck radiation for Hodgkin's lymphoma. This patient showed no change in pulmonary function tests [40]. Gray reported a diver one year post-bleomycin therapy who returned to active diving without consequence [41], and other authors report similar observations [37,42,43]. Moreover, our 15-patient series found no post-HBO₂ pulmonary complications in spite of a wide variety of bleomycin indications, HBO₂ latencies in the case sample.

CONCLUSIONS

This case series adds to the literature supporting the safe use of HBO_2 after bleomycin *(Table 3, previous page)* and suggests that the prohibition of postbleomycin HBO_2 should be questioned. Although bleomycin and oxygen can individually cause acute

pulmonary toxicity, we believe that the evidence for increased long-term susceptibility based on their synergy is overstated and because bleomycin is widely prescribed, unnecessary oxygen restriction has the potential to adversely impact future medical care (surgery, HBO₂ therapy), professional careers (flying, diving) and recreational activities of the subset of cancer survivors who have required this drug [3,37,43,44].

Although we do not routinely withhold oxygen therapy from post-bleomycin patients, our practice is to wait three to six months post-bleomycin administration before treating with HBO₂. Only two of our patients received HBO₂ sooner than six months after bleomycin; the majority were treated after two years: thus, we do not have strong evidence for the safety of HBO₂ sooner than six months following bleomycin. Therefore, in accordance with other experts [37], we individually evaluate each candidate. If there is any question of preexisting pulmonary disease we establish a baseline for pulmonary function with spirometry, DLCO and imaging and monitor for adverse change during HBO₂ therapy.

REFERENCES

1. Goldiner PL, Carlon GC, Cvitkovic E, Schweizer O, Howland WS. Factors influencing postoperative morbidity and mortality in patients treated with bleomycin. Br Med J. 1978 Jun 24;1(6128):1664-7.

2. Jules-Elysee K, White DA. Bleomycin-induced pulmonary toxicity. Clin Chest Med. 1990 Mar;11(1):1-20.

3. Zanetti CL. Scuba diving and bleomycin therapy. JAMA. 1990 Dec 12;264(22):2869.

4. Hamilton D, Williams M, Wilmshurst P. The bends. BMJ. 1988 Sep 24;297(6651):793-4.

5. Donat SM, Levy DA. Bleomycin associated pulmonary toxicity: is perioperative oxygen restriction necessary? J Urol. 1998 Oct;160(4):1347-52.

6. Douglas MJ, Coppin CM. Bleomycin and subsequent anaesthesia: a retrospective study at Vancouver General Hospital. Can Anaesth Soc J. 1980 Sep;27(5):449-52.

7. Comis RL. Bleomycin pulmonary toxicity: current status and future directions. Semin Oncol. 1992 Apr;19(2 Suppl 5): 64-70.

8. Goldiner PL, Rooney SM. In defense of restricting oxygen in bleomycin-treated surgical patients. Anesthesiology. 1984 Aug;61(2):225-7.

9. Simpson AB, Paul J, Graham J, Kaye SB. Fatal bleomycin pulmonary toxicity in the west of Scotland 1991-95: a review of patients with germ cell tumours. Br J Cancer. 1998 Oct;78(8):1061-6.

 Ingrassia TS 3rd, Ryu JH, Trastek VF, Rosenow EC, 3rd. Oxygen-exacerbated bleomycin pulmonary toxicity. Mayo Clin Proc. 1991 Feb;66(2):173-8.

11. Kindwall EP. Hyperbaric Medicine Practice. 3rd ed. Flagstaff, AZ: Best Pub. Co.; 2008.

12. Umezawa H, Maeda K, Takeuchi T, Okami Y. New antibiotics, bleomycin A and B. J Antibiot (Tokyo). 1966 Sep;19(5):200-9.

13. Hay J, Shahzeidi S, Laurent G. Mechanisms of bleomycininduced lung damage. Arch Toxicol. 1991;65(2):81-94.

14. Azambuja E, Fleck JF, Batista RG, Menna Barreto SS. Bleomycin lung toxicity: who are the patients with increased risk? Pulm Pharmacol Ther. 2005;18(5):363-6.

15. Blum RH, Carter SK, Agre K. A clinical review of bleomycin--a new antineoplastic agent. Cancer. 1973 Apr;31(4):903-14.

16. Boggs SS, Sartiano GP, DeMezza A. Minimal bone marrow damage in mice given bleomycin. Cancer Res. 1974 Aug;34(8):1938-42.

17. Yagoda A, Mukherji B, Young C, Etcubanas E, Lamonte C, Smith JR, et al. Bleomycin, an antitumor antibiotic. Clinical experience in 274 patients. Ann Intern Med. 1972 Dec;77(6):861-70.

18. De Lena M, Guzzon A, Monfardini S, Bonadonna G. Clinical, radiologic, and histopathologic studies on pulmonary toxicity induced by treatment with bleomycin (NSC-125066). Cancer Chemother Rep. 1972 Jun;56(3):343-56.

19. Lazo JS, Humphreys CJ. Lack of metabolism as the biochemical basis of bleomycin-induced pulmonary toxicity. Proc Natl Acad Sci U S A. 1983 May;80(10):3064-8.

20. Bechard DE, Fairman RP, DeBlois GG, Via CT. Fatal pulmonary fibrosis from low-dose bleomycin therapy. South Med J. 1987 May;80(5):646-9.

21. McLeod BF, Lawrence HJ, Smith DW, Vogt PJ, Gandara DR. Fatal bleomycin toxicity from a low cumulative dose in a patient with renal insufficiency. Cancer. 1987 Dec 1; 60(11):2617-20.

22. Bauer KA, Skarin AT, Balikian JP, Garnick MB, Rosenthal DS, Canellos GP. Pulmonary complications associated with combination chemotherapy programs containing bleomycin. Am J Med. 1983 Apr;74(4):557-63.

23. Einhorn L, Krause M, Hornback N, Furnas B. Enhanced pulmonary toxicity with bleomycin and radiotherapy in oat cell lung cancer. Cancer. 1976 May;37(5):2414-6.

24. Nygaard K, Smith-Erichsen N, Hatlevoll R, Refsum SB. Pulmonary complications after bleomycin, irradiation and surgery for esophageal cancer. Cancer. 1978 Jan;41(1):17-22.

25. Dalgleish AG, Woods RL, Levi JA. Bleomycin pulmonary toxicity: its relationship to renal dysfunction. Med Pediatr Oncol. 1984;12(5):313-7.

26. Sleijfer S. Bleomycin-induced pneumonitis. Chest. 2001 Aug;120(2):617-24.

27. Holoye PY, Luna MA, MacKay B, Bedrossian CW. Bleomycin hypersensitivity pneumonitis. Ann Intern Med. 1978 Jan;88(1):47-9.

28. Balikian JP, Jochelson MS, Bauer KA, Skarkin AT, Garnick MB, Canellos GP, et al. Pulmonary complications of chemotherapy regimens containing bleomycin. AJR Am J Roentgenol. 1982 Sep;139(3):455-61.

29. White DA, Stover DE. Severe bleomycin-induced pneumonitis. Clinical features and response to corticosteroids. Chest. 1984 Nov;86(5):723-8.

30. Luis M, Ayuso A, Martinez G, Souto M, Ortells J. Intraoperative respiratory failure in a patient after treatment with bleomycin: previous and current intraoperative exposure to 50% oxygen. Eur J Anaesthesiol. 1999 Jan;16(1):66-8.

31. Hulbert JC, Grossman JE, Cummings KB. Risk factors of anesthesia and surgery in bleomycin-treated patients. J Urol. 1983 Jul;130(1):163-4.

32. Gilson AJ, Sahn SA. Reactivation of bleomycin lung toxicity following oxygen administration. A second response to corticosteroids. Chest. 1985 Aug;88(2):304-6.

33. LaMantia KR, Glick JH, Marshall BE. Supplemental oxygen does not cause respiratory failure in bleomycin-treated surgical patients. Anesthesiology. 1984 Jan;60(1):65-7.

34. Toledo CH, Ross WE, Hood CI, Block ER. Potentiation of bleomycin toxicity by oxygen. Cancer Treat Rep. 1982 Feb; 66(2):359-62.

35. Tryka AF, Godleski JJ, Brain JD. Differences in effects of immediate and delayed hyperoxia exposure on bleomycininduced pulmonary injury. Cancer Treat Rep. 1984 May;68(5): 759-64.

36. Waid-Jones MI, Coursin DB. Perioperative considerations for patients treated with bleomycin. Chest. 1991 Apr;99(4): 993-9.

37. de Wit R, Sleijfer S, Kaye SB, Horwich A, Mead B, Sleijfer DT, et al. Bleomycin and scuba diving: where is the harm? Lancet Oncol. 2007 Nov;8(11):954-5.

38. Shanta V, Krishnamurthi S, Sharma M. Irradiation, bleomycin and hyperbaric oxygen in the treatment of oral carcinoma. Acta Radiol Oncol. 1983;22(1):13-6.

39. Wang PH, Yuan CC, Lai CR, Chao HT, Tseng JY, Chiang H, et al. Rapid progression of squamous cell carcinoma of the cervix after hyperbaric oxygenation. Eur J Obstet Gynecol Reprod Biol. 1999 Jan;82(1):89-91.

40. Latson G. Return to diving after bleomycin therapy - case report and review. Undersea Hyperb Med. [Abstract of the Undersea and Hyperbaric Medical Society, Inc. Annual Scientific Meeting held June 14-16, 2007. Ritz-Carlton Kapalua Maui, Hawaii (http:www.uhms.org)]. 2007;34 (5):J16.

41. Gray RN, Jr. Scuba diving post-bleomycin therapy: a case report. Undersea Hyperb Med. 2010 Nov-Dec;37(6):455-7.

42. White RM. More on bleomycin and scuba diving. Neth J Med. 2003 Nov;61(11):388-9; author reply 9.

43. Huls G, ten Bokkel Huinink D. Bleomycin and scuba diving: to dive or not to dive? Neth J Med. 2003 Feb;61(2):50-3.

44. van Hulst RA, Rietbroek RC, Gaastra MT, Schlosser NJ. To dive or not to dive with bleomycin: a practical algorithm. Aviat Space Environ Med. 2011 Aug;82(8):814-8.

45. Cersosimo RJ, Matthews SJ, Hong WK. Bleomycin pneumonitis potentiated by oxygen administration. Drug Intell Clin Pharm. 1985 Dec;19(12):921-3.